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PLASTIC FLEXURE OF ORTHOGONALLY
REINFORCED CONCRETE PLATES

ANTONI SAWCZUK

Institute of Fundamental Technical Research, Polish Academy of Sciences, Warsaw, Poland

Abstract-A method of finding complete limit analysis solutions for orthotropic plates is developed. For a
yield condition suitable for reinforced concrete slabs, existence of hyperbolic and parabolic stress regimes is
shown. Presence of hyperbolic zones is responsible for differences between the exact and the yield line theory
solutions. Differences between isotropic and orthotropic plate formulas for the yield point loads are shown.
Examples of various boundary conditions are considered.

1. INTRODUCTION

THE yield line theory, its original formulation by Johansen included [1] is applicable to
orthotropic plates. When applied, it furnishes an upper estimate of the collapse load.
No general method existed, however, leading to complete solutions of plastic bending of
such structures.

Recently, Sawczuk and Hodge [2J developed a method to establish complete solutions
for isotropically reinforced concrete plates. It was shown that essentially two types of
load carrying regions unfold in such plates at collapse. These regions are associated with
parabolic and hyperbolic types of equations of the problem. The yield line theory accounts
for parabolic regimes only. This fact produces a substantial difference in the predicted
yield-point load whenever the boundary conditions impose a hyperbolic regime.

Any yield-line theory solution can, in principle, be supplemented by a lower bound
estimate. For orthotropic plates, however, no general method exists for finding statically
admissible stress field and the guess and trial procedures lead to quite distant bounds.
It appeared therefore worthwhile to establish explicitly for orthotropic plates the relations
analogous to those for isotropic ones and allowing a direct integration of stress
equations.

The present note concerns this question. A suitable yield condition for reinforced
concrete plates is formulated in Section 3. For orthotropic plates such a condition has
to be expressed in terms of mixed tensors of moments and plastic anisotropy. The deflected
surface associated with this appropriately generalized "square" yield condition is
investigated in Section 4. Stress equations are studied next, yielding the relations concerning
parabolic and hyperbolic regimes. The seventh section gives an analysis of stress discontin
uities on the lines of change of the stress regime. Specific relations for point lorded plates
are established next and differences with the isotropic case are discussed. Some examples
are given in the last section. The choice of examples is such as to permit comparisons with
the yield line theory solutions and to illustrate the application of the method to mixed
boundary conditions as well as the presence of stress discontinuities and of various stress
zones in a plate.
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2. BASIC EQUATIONS

We consider an orthotropic, perfectly plastic plate. The principal axes of plastic
anisotropy are chosen as Cartesian axes of reference. Let H denote the thickness, M 0 the
reference yield moment per unit length, and L a reference length in the undeformed middle
plane of the plate. We define dimensionless coordinates, shears, moments, curvature rates
and velocity by

kx = L 2 K x/H, ... , w = W/H

while dimensionless loads by

x = X/L,
(2.1 a)

p = Q/Mo or PU/Mo (2.1 b)

for.concentrated and distributed actions respectively. Capital letters refer to corresponding
dimensioned quantities.

The dimensionless form of equilibrium equations is therefore

qx.x +qy.y = p.

The curvature rates and the transverse velocity are related by

(2.2a)

(2.2b)

(2.3)

In the above, commas denote partial differentiation with respect to the ensuing variable.
In a plastic state the moments must satisfy a yield condition. For anisotropic materials

such a condition necessarily involves the current tensor of plastic anisotropy, C,,{J,,) say.
Hence

f(C"{Jy,)m,,p) = 0, IX, /3, ')I, 15 = 1,2.

The curvature rates are then given by the associated flow rule

(2.4)

v 2 O. (2.5)

Eventually the set of equations of plastic flexure reduces to seven relations for unknown
three moments, two shears, the deflection velocity w, and the scalar multiplier v.

3. YIELD CONDITION

An element of isotropically reinforced concrete plate yields whenever the maximum
principal moment attains the yield value

(3.1 )

In a moment space mx, ,ny, mxy this "square" yield condition generates a pair of intersecting
coaxial cones (cf. [3], [4], [5]). For an anisotropic plate a yield criterion which appropriately
generalizes (3.1) must be expressed in terms of the mixed tensor of anisotropy and moments

(3.2)
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If m~fJ and mafJ are required to be symmetric the plastic anisotropy tensor must be of fourth
order and CafJY~ = CfJay~ = Cy~afJ'

In the system of reference coinciding with the directions of orthogonally disposed
reinforcement the matrix CafJY~ is of diagonal form. This is equivalent to the statement
that the yield moment for a principal direction of orthotropy depends solely on the
reinforcement in this direction. Hence

(3.3)

o 0 B mXY

and a generalization of (3.1) is

f± = max{lm?l, Imm ± 1 = O. (3.4)

From (3.3) in what follows the yield moment in x-direction is taken as a reference value
and CafJY~ is dimensionless. In the space of "reduced" moments m~, m~, m~y the condition
(3.4) gives two cones

(3.5)

whereas in the moment space

(3.6)

The upper or lower sign is to be used consistently in all equations.
The material constants A and B depend on the amount of reinforcement (here: equally

disposed at the top and bottom surfaces), as well as on the concrete strength. The form (3.6)
with B2 = A was obtained by Massonnet and Save [3J and Nielsen [6J through direct
considerations of response of reinforced concrete slabs to bending. Moreover, Morely [7J,
employing bounding procedures concludes that such a particular form of(3.6) is acceptable.
(cf. also Kemp [8J, Save [5]). The formulation (3.4) of this yield criterion permits a direct
integration of the field equations.

The yield surface (3.5) consists of two cones in the reduced stress space and intersecting
the plane m~y = 0 on a square. In the space mx, my, mxy this intersection is a rectangle
(cf. [3J, [7J for visualization). On intersection of the cones

(3.7)

but the associated flow law contains now two scalar multipliers thus the number of
equations is still equal to that of unknowns.

According to (3.5) the absolutely larger principal "reduced" moment is m7 = ± 1.
Let mo denote the other principal moment and ¢ the angle between the positive x-axis
and the direction associated with mo. Equation (3.5) is then identically satisfied by the
substitutions

m~ = (mo+l)cos2 ¢ ±1,

m~y = (mo + 1) sin ¢ cos ¢
(3.8)
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Or, restricting the analysis to the case B = .jA

mx+1 = ), cos2 <jJ, Amy+1 = I, sin 2 <jJ,

mXY.jA = I, sin <jJ cos <jJ, ), = (ma +1)

where, as above,

4. DEFLECfED SURFACE

(3.9)

(3.10)

It has been remarked in [2] that a study of kinematics yields a significant information
regarding integration of stress equations for isotropic plates. In view of the analogy
between (3.1) and (3.4) the situation should be similar for orthotropic plates.

(a) Regular moment points

For moment points on the surfacef+ orf-, which are away from the crease or vertices,
the flow law (2.5) and the relations (2.3) produce

w'xx = v(Amy+1) = VA sin 2 <jJ,

w'Y}' = v(mx +1) = VIA cos 2 <jJ,

W'xy = - vAmxy = - v),.j(A) sin <jJ cos <jJ.

(4.1)

Equations (4.1) are a set of relations containing three unknowns w, VA and <jJ and may be
discussed independently of the equilibrium equations. The type of deflected surface can be
established from the sign of the discriminant of the second fundamental form of w(x, y),
Substitution of (4.1) into the discriminant results in

(4.2)

Hence the surface is developable, the system (4.1) is parabolic and the characteristics are
straight lines. We note that for the general form of (3.6) when B #- .jA, the deflected
surface is either hyperbolic or elliptic.

To obtain an explicit form of the characteristics we eliminate w among the derivatives
of (4.1) and remark that further AV and its derivatives can be eliminated, rendering one
quasi-linear equation in <jJ alone. Supplementing this by the expression for the variation
of <jJ along the characteristic we obtain the following system

A simple computation yields

-)(A)<jJ,x cos <jJ + <jJ,y sin <jJ = 0

<jJ,x dx + <jJ,y dy = d<jJ.
(4.3)

dy 1

dxJ:4tg <jJ,
<jJ = const. (4.4a,b)
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Thus the characteristics (4.4) are straight and constitute one family of principal curvature
lines (d. Fig. 1). Contrary to the isotropic case, however, they are no longer the principal
moment trajectories (d. Save [5]).

VI. ~,.

\(3,/
~\I boundar

S I

.........-J p.a.ra.bohc zone
characteristics

h~p.erboLic lone

..
x

FIG. I. Characteristics of the deflected surface.

(b) Singular moment points

On the intersection of the two cones (3.8) the stresses satisfy (3.7). Taking the first
principal moment to be positive, thus

m? = 1, m~ = -1 (4.5)

we obtain from (3.9)

mx = - cos 2fjJ, Amy = cos 2fjJ, J(A)mxy = - sin 2fjJ.

The plastic potential flow law associated with (4.5) gives

W'xx = (v++L)cos2fjJ+(v+-v_), wxy = J(A)(v++L)sin2fjJ

W,yy= -(v++v_)cos2fjJ+A(v+-L), v+ ;;:::0, v- ;;:::0.

The discriminant of w(x, y) is easily found to be always negative

(4.6)

(4.7)

(4.8)

thus the surface is of negative Gaussian curvature. From (4.7) one obtains the following
equation

Aw,xx - 2J(A)w,xyctg 2fjJ - W,yy = 0

which is easily shown to have the characteristics

(4.9)

dy I

dx JA
tgfjJ

, (4.10a,b)

The net of characteristics is orthogonal only at A = 1, thus for the isotropic case studied
in [2].
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(5.la)

(5.1 b)

Since (4.10) contains the characteristic (4.4a), the hyperbolic and parabolic regimes
juxtapose.

In the stress regions associated with the vertices of the cones the velocity field is
arbitrary but ofpositive Gaussian curvature and subject to the restriction that the curvature
rate vector lie within the cone delimited by the normals to the yield surface at the vertices.

5. STRESS EQUATIONS: PARABOLIC ZONE

For regular points of the yield surface (3.5) the moments (3.9) when combined with the
equilibrium relations (2.2a) produce the following two quasi-linear equations in 4J and Ie

4J,x cos 4J +-i- 4J,y sin 4J = ~(-J(A)q). cos 4J - CJx sin 4J),
vA /.

A,x cos 4J +JA )"y sin 4J = f(CJx, qy, A, 4J, 4J,x, 4J,y).

As a simple comparison with (4.3) shows, the equations are parabolic, with the same
characteristic (4.4).

Along the straight characteristics therefore

qxsin 4J--J(A)qycos4J = O. (5.2)

This, together with (2.2b) specifies the shear on the characteristic and eventually allows
the integration of d/, = fO., p, 4J). The integral takes a form particularly suitable for further
interpretation if the stress equations are transformed into an orthogonal coordinate
system containing the straight characteristics as one coordinate and possessing an envelope
(Fig. 2). Contrary to the isotropic case this system does not constitute the net of moment
trajectories. The equilibrium equations (2.2) take the form

rmr.r+ mro.o + (mr- mo) = rqr'

rmro.r +mo.o +2mro = rqo,

y

/
Ae,

x

FIG. 2. Characteristics in a hyperbolic lone.

(5.3a)

(5.3b)

(5.3c)
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The moments (3.9) transformed to the actual system of reference for which

1
tg& = JA tg¢ (5.4)

(5.5)

give eventually

mil = mx sin2 &+mycos2 &-mXY sin 28 = ±~(A sin2&+cos2 8)1.

mrll = (my-mx ) sin 28+mxy cos 2& = ±~(l-A)sin8cos81
In view of (5.5) the equation (5.3) can be regarded as the system for the unknowns

m" qr and qll' From (5.3b,c) it is found that

rqr = C(&)- I pr dr. (5.6)

Hence the moment along the characteristic is

(5.7)m = +1r -
I-A sin2 8+C(&)+ D(&) +~fpr2 dr- f prdr.

A r r

For an isotropic case A = 1, and the result of Schumann is obtained, [9].
To determine the integration function we have on a simply supported edge mn = 0,

thus the radial moment takes on the boundary the following value

(5.8)

where fJ is the angle between the boundary normal and the straight characteristic, positive
when counterclockwise, (Fig. 1). To specify the stress field completely, an additional
condition regarding shears is necessary. In this respect there is no difference in comparison
with the isotropic case. It is worthwhile to mention that the "Affinity theorems" of the
limit analysis theory (cf. [1], [10], [13J) apply in a parabolic zone of an orthotropic plate.

6. STRESS EQUATIONS. HYPERBOLIC ZONE

The moments (4.6) are easily shown to lead to a hyperbolic equation for ¢, with (4.10)
as the characteristics. To complete the solution one can transform the equilibrium equations
to the system of characteristics as coordinate lines. The moments being known the
equilibrium equations after elimination ofshears lead to one relation between the curvatures
of the coordinate net. The second relation is furnished by the conditions (4.10), specifying
the angle of intersection of the coordinate lines.

Alternatively we can choose for the unknown reference system an orthogonal one,
containing one of the characteristics, the first of (4.10) say, as a coordinate line (Fig. 2).
Along this line

(6.1)
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the remaining moments mt , mnt being expressed by the formulas (5.5) for mo and m,/!
respectively. The shear equilibrium equation and the Lame condition constitute the system
to be resolved for curvatures Pn, Pt. The procedure is thus analogous to that explained
in [2J, except that characteristics are no longer orthogonal and intersect at a variable
angle t/J.

To compute the load carrying capacity Qof an hyperbolic region the "radial" shear q"
is to be integrated along a "circumferential" line

J
s

Q = (- qn) ds, .
So

In the elliptic zone associated with the vertices of the yield surface

(6.2)

m? = m~ ±1 -> mx = ±1,

as it follows from (3.8). Therefore

Amy = ± 1, mxy = 0, (6.3)

qx = q), °-> Q = 0,

thus no load is carried by such a zone.

7. STRESS DISCONTINUITIES

(6.4)

Since the various stress regimes give different analytic solutions, stress discontinuities
must be allowed on the characteristics connecting different zones. Moreover, as in a
parabolic region the radial moment (5.8) depends explicitly on the boundary normal,
a discontinuity can appear whenever the normal is not uniquely specified, thus at the
corners. Since in both cases the connecting characteristic is straight we consider only the
discontinuities allowed by the equilibrium equations in the form (5.3).

On a discontinuity line the following continuity requirements are prescribed (cf.
Hopkins [IIJ).

[mroJ = 0, [mo] 0, [qe+mre.,] = 0. (7.1)

We note from (5.5), (6.1) and (6.3) that neither me nor mro depend on the radial coordinate
for any of the stress regimes. Assuming, for definiteness me positive and employing the
above stated conclusions in (5.3) we obtain the following jump conditions.

r[qrJ = const. [(rmr ), r] = const. (7.2)

Whenever mr = const. on the characteristic, it is

[mrJ = r[qrJ = const.

and the specific value of the constant is easily found to be

[m,] - mo(tg2 f3 + - tg2 f3 -) - 2mre(tg f3+ - tg f3 -)

(7.3)

(7.4)

2 Am;e- 1
[mrJ -metg f3+-2mretgf3+- A (7.5)

me

for a parabolic-parabolic and a parabolic-hyperbolic boundary respectively. In (7.4),
(7.5) tgf3+ and tgf3- denote the normals to the simply supported boundary, respectively
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(7.6)

after and before passing the discontinuity line at the point where it intersects the boundary.
Analogous relations are straight-forward to establish for a transition from the load carrying
regions to the zone of uniform bending (6.3), where Amr = A cos2 0 + sin2 O.

It has to be remarked that for a smooth boundary, transition from a hyperbolic to a
parabolic zone is continuous. This continuity requirement for mr allows one to establish
the limiting angle fJo at which the change of stress regime occurs on a simply supported
boundary. Making (5.8) equal to (6.1) one obtains eventually

fJ
JA - (1- A) sin 0 cos 0

tg 0 - 0 ~ 0 ~ n/2.
- A sin 2 0+cos2 0 '

The parabolic solution applies for 0 ~ IfJl ~ fJo and for IfJl ~ fJo the stress region is
hyperbolic. If A = 1 the known result fJo n/4 for isotropic plates follows.

The stress equations can be used for estimations of lower bounds.

8. POINT LOADED PLATES

We proceed to establish the formulas for the limit load, in order to allow comparisons
of the orthotropic plate solutions with those rendered by the yield line theory.

Let us consider a simply supported plate subjected to a single point load p applied
downwards at the origin of a polar coordinate system r,O (Fig. 3). The plate boundary is
r = p(O} (dimensionless). We assume that the parabolic solution will hold at least for a
part of the plate. The deflected surface is over there of conical shape with vertex at the
point of loading. The characteristics will then be straight lines through the origin. They
form an angle fJ with the normal to the boundary (Fig. 3)

p'
tg fJ = tg(O-4» = -. (8.1)

P
Since the circumferential curvature is positive, the upper sign is appropriate in Section 5.

The function D(O) in (5.7) must vanish because mr has to be finite also at the origin. In
view of the boundary condition (5.8) the moments are:

mo = 1+(x-l)cos2 0, mrlJ = (x-l)sinOcosO, (8.2a)

(8.2b)

stress de scanti l1.uit

If

__ ----r

Qo~'-=--c~" \ ~reinforcemel1.tx
FIG. 3. Stress regimes in a point loaded plate.
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where the minus sign applies whenever p < O. To allow comparisons with the yield line
theory the "orthotropy ratio" is introduced

(8.3)

(8.7)

Substitution of these results in (5.3) yields

qo = O,-rqr = l+(~r +(X-l)[sino±(~) coso] 2. (8.4)

The range of applicability of (8.1) and (8.4) is to be established from (7.6), which in view of
(8.1) takes the form

(~)(Sin2 Oo+x cos2 Oo)±(x-l) sin 00 cos Oo-~x = O. (8.5)

For each particular boundary curve this has to be resolved for 00 delimiting the parabolic
region.

The load carried by a parabolic zone is obtained by integrating the radial shear along
any circumferential trajectory of the deflected surface, (Fig. 3)

Pp = f' (-qr)rdO = f' [l+(~r +(X-1)(Sino±(~)coSO)2J dO. (8.6)

At x = 1 the known result for isotropic plates is recovered ([12], [2]).
For 0 satisfying (8.5) a hyperbolic zone adjoints the parabolic zone along a straight

characteristic. Such a zone is, as a rule in simply supported planes, bordered on both sides
by parabolic regions. In the actually chosen system of coordinates (Fig. 3) the moments
mo, mro in the hyperbolic zone are given by (8.2a) and

(x-1)2 sin20 cos2O-x
m =

r I-(x-l) cos2 0
The shears follow from (5.3)

rqr = -2x/(sin2 O+x cos2 0), qo = 0

and the load carried by the hyperbolic zone OKL in Fig. 3 is obtained from (6.2)

(8.8)

(8.9)Ph = 1:2

-rqrdO = 2~X[tg-l(tj~2) -tg-l(tj~l)l

The total collapse load is obtained summing all contributions (8.6) and (8.9), since
no load is carried by the zones of homogeneous bending (6.3).

When the plate boundary is clamped, the adjoining zone is hyperbolic and the collapse
load consists ofcontributions (8.9). The situation is analogous to that in isotropic plates [2].

9. EXAMPLES

(a) Simply supported circular plate, loaded at the center

The directions of reinforcing fibers, and thus the axes of orthotropy are as indicated
in Fig. 4. The yield moments in the directions of orthotropy are

mx = ±1, my = ±x, (9.1)
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FIG. 4. Circular orthotropic plates: reinforcement arrangement and boundary conditions.
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(9.3)

(9.2)

(9.4)

(9.5)

Since pCB) = r = const., it is f3 = °in (8.1) and the entire plate is a parabolic stress regime.
The moments are, therefore

my = 0, m6 = 1-(x-l) cos2 B, my6 = (x-I) sin Bcos ()

and the collapse load follows from (8.6)

f
"/2

P = 4 0 [1 +(x-l) sin2 BJ dB = (x+ l)n,

being equal to the yield line theory solution. Since the stress regime is parabolic in the
entire plate such a result should be expected. The yield line theory, in effect, employs the
parabolic type of relations throughout.

(b) Point loaded clamped plate

For definiteness we take the boundary curve to be concave toward the point ofloading.
Because the boundary is clamped the entire plate is in a hyperbolic regime.

The moments are directly given by (8.2a) and (8.7), whereas the shears are specified by
(8.8). The yield point load is therefore

f
"/2

p = 4 a (- qy)r dB = 4nJx.

The deforming zone covers only a part of the plate.

(c) Circular plate with mixed boundary conditions, lower bound solution

Let the part AC of the plate shown in Fig. 4 be clamped. The zone AOC is in a hyperbolic
stress regime. On the characteristic OC there is the radial moment discontinuity of
magnitude

[ J
- h_ p_(x-l)2sin2 {)cos2 B-x

my - my my - 2'
1-(x-l) cos B

since in BOC the moments, mP, are given by (9.2) and in AOC, mh, by (8.7) and (5.5).
The collapse load is obtained by adding the contributions of both regions. Simple

computation yields

/ [ (tgc/J)J (n) (x-I)p = 2v x 2n-2tg- 1 Jx +(1+x) 2-c/J --2- sin c/J

for °:s; c/J :s; n12.

(9.6)
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(d) Simply-supported rectangular plate loaded at the center

Let 2A and 2B be the sides, B the characteristic length and a = A/B :2: I, Fig. 5. The
boundary curve is

where

r = p(O) = a/cos 0,

r = I/sin 0,

OS;OS()h

01 S; 0 S n/2,

01 ctg- I a.

The orthotropy is defined by (9.1), x > I.

FIG. 5. Stress regimes in a rectangular plate: (a) parabolic, (h) hyperbolic.

(9.7)

To establish the transition line from a parabolic to a hyperbolic stress regime equation
(7.6) is to be employed for positive f3

(9.8)

It yields

(9.9)

and therefore the hyperbolic zone covers the range ctg- 1
IX S 0 S; tg- I ,jx. The diagonal

OD is a discontinuity line for the radial shear and moment.
In the parabolic zones the moments and the radial shear are given by (8.2a) and by the

following expressions

m, = -sin2 0. (2-x+tg2 0), -rq, = 1/cos2 0 (9.10)

for 0 S 0 S; 01 , f3 < 0, whereas for O2 S e S; n/2, since f3 > 0, one obtains

m, = -cos2 O. (2x-l +x ctg2 0), (9.11)

In the hyperbolic zone details of the solution must be found numerically but the load
carrying capacity is known from (8.9),

(9.12)
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Adding to (9.12) the contributions of the parabolic stress regimes the collapse load is

found

JOt de J1t
/
2 de

4= + --+x --p/ Ph cos 2 e sin 2 eo 02

= rx- I +Jx(l +n/2)-2Jx ctg- I rxJx.

At x = 1 the result for an isotropic plate is recovered, [2].
For a plate strip, rx ~ 00 and

p = 2Jx(n+2).

(9.13)

(9.14)

Influence of the reinforcement arrangement on the load carrying capacity is illustrated in
Fig. 6, where also a comparison of (9.13) with the yield line theory solutions is given.

3.2

3.0

11'/4
I28

26

2.4

2.2

FIG. 6. Collapse load for orthotropic plate; exact: (a) x = 1, (b) x = 1,5; yield line theory: (c)
x = 1, (d) x = 1, 5.

(e) Clamped circular plate loaded at two points, lower bound solution

In plates loaded by systems of concentrated forces discontinuous stress fields develop.
For the case shown in Fig. 7, CB is a discontinuity line on transition from the hyperbolic
region AC to the zone of homogeneous stress.

In the hyperbolic zone m" mro, mo are as given by (8.7) and (8.2a) respectively, whereas
in OCB

mxy = o. (9.15)

This homogeneous stress field satisfies on OB the continuity requirements [moJ = [mroJ = O.
The radial moment and shear have the discontinuity

[mrJ = r[qrJ = -2x/(sin2 e+xcos2
(}). (9.16)
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b / #

~-"L-~ QI2i-~O"'-_·~-'-_--l[L·_"'--
L"R. -i X

FIG. 7. Two point loaded circular plate: discontinuous field (a) homogeneous bending, (b) hyperbolic
regime.

As it was pointed out earlier, the zone of homogeneous bending carry no load. Thus the
load carrying capacity of the plate is found from (8.9) to be

p = 8.Jx[n-ctg~ 1 a.Jx]. (9.17)

The method can readily be applied to other examples. It is to be noted that for the
yield condition (3.8) no essential difference exists between the procedure of collapse load
evaluation for isotropic and orthotropic plates. The respective relations for collapse loads
differ however, since the characteristics are no longer lines of principal moments. Kine
matical conditions on a clamped boundary require a special study.
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A6cTpaKT-OpeACTaBJIlleTCll MeTOA onpeAeJIeHHll nOJIHblX perneHHH rpaHH'IHOrO COCTOllHHll AJIll OpTOTpO
nHbIX nJIaCTHHOK, OOKa3aHo CYillccTBoBaHHe rHnep6oJIH'IeCKHX pelKHMOB HanplllKeHHH AJIll yCJIOBHll
TeKy'leCTH, cooTBeTcTByIOillero lKeJIe306eToHHbIM nJIHTaM, HanH'IHe rHnepo6oJIH'IeCKHX o6nacTeH
BbI3blBaeT pa3HHIIbi MelKAY TO'lHbIM perneHHeM H perneHHeM TeopHH nHHHH rrepeJIOMa. YKa3blBaIOTcll
pa3HHIIbi MClKAY ¢lopMYJIaMH H30TponHOH H OpToTponHoH nJIaCTHHKH Anll npeAenHblX HarpY30K,
PaccMaTpHBaIOTcll npHMcpbl npH pa3Hbix rpaHH'IHbiX YCJIOBHllX.


